Sabtu, 06 April 2013

Beginilah Cara Menghitung Jarak Benda-benda Langit

Bagaimana sebenarnya cara astronom untuk dapat menghitung dan mengetahui jarak diantara benda-benda langit seperti matahari, planet, bintang, galaksi dan sebagainya. Metode penentuan jarak bintang dan objek luar angkasa lainnya yang paling sederhana adalah metode paralaks trigonometri. Akibat perputaran Bumi mengitari Matahari, maka bintang-bintang yang dekat tampak bergeser letaknya terhadap latar belakang bintang-bintang yang jauh. Dengan mengukur sudut pergeseran itu (disebut sudut paralaks), dan karena kita tahu jarak Bumi ke Matahari, maka jarak bintang dapat ditentukan.

Berkas:UpdatedPlanets2006-indonesian.jpg

Sudut paralaks ini sangat kecil hingga cara ini hanya bisa digunakan untuk bintang-bintang yang jaraknya relatif dekat, yaitu hanya sampai beberapa ratus tahun cahaya (bandingkan dengan diameter galaksi kita yang 100.000 tahun cahaya, dan jarak galaksi Andromeda yang dua juta tahun cahaya). Ada metode lain yang dapat meraih jarak lebih jauh, yaitu metode fotometri.

Bayangkan pada suatu malam yang gelap Anda melihat sebuah lampu di kejauhan. Anda diminta menentukan jarak lampu itu. Ini dapat Anda lakukan asalkan Anda tahu berapa watt daya lampu itu. Dalam istilah astronomi daya sumber cahaya disebut luminositas, yaitu energi yang dipancarkan sumber setiap detik. Jarak ditentukan dengan menggunakan prinsip inverse-square law, artinya terang sumber cahaya yang kita lihat sebanding terbalik dengan jarak kuadrat. Suatu lampu yang jaraknya kita jauhkan dua kali, cahayanya akan tampak lebih redup empat kali.

Ada benda-benda langit yang luminositasnya dapat diketahui. Ini disebut sebagai lilin penentu jarak (standard candle). Salah satu lilin penentu jarak adalah bintang-bintang variabel Cepheid yang berubah cahayanya dengan irama tetap (periodik). Perubahan cahaya itu disebabkan karena bintang itu berdenyut. Makin panjang periode (selang waktu antara) denyutan, makin terang bintang itu.

Sifat tersebut ditemukan oleh astronom wanita Henrietta Leavitt pada tahun 1912. Jadi, luminositas bintang dapat ditentukan dengan cara mengukur periode denyutannya. Variabel Cepheid merupakan bintang yang sangat terang, hingga beberapa puluh ribu kali matahari, karena itu dapat digunakan untuk menentukan jarak galaksi lain.

Ada lilin penentu jarak yang jauh lebih terang lagi, yaitu Supernova Type Ia. Ini bintang meledak, terangnya telah dikalibrasi sekitar 10 miliar kali matahari. Ini lilin penentu jarak yang sangat penting karena bisa digunakan untuk menentukan jarak galaksi-galaksi yang sangat jauh. Studi tentang Supernova Type Ia ini intensif dilakukan sekarang.

Alam semesta


Sebuah mobil ambulans bergerak sambil membunyikan sirene. Bila mobil itu sedang mendekati kita, maka suara lengking sirene itu bernada tinggi. Tetapi bila mobil melewati kita dan bergerak menjauh, nada lengking menjadi rendah. Ini disebut efek Doppler. Bunyi adalah peristiwa gelombang. Pada saat sumber bunyi mendekat, waktu getarnya (frekuensinya) bertambah, maka nadanya terdengar tinggi. Tetapi bila sumber bunyi menjauh, waktu getarnya merendah.

Cahaya merupakan gelombang elektromagnet. Cahaya yang waktu getarnya cepat berwarna biru, yang waktu getarnya lambat berwarna merah. Efek Doppler juga berlaku untuk cahaya. Sebuah sumber cahaya akan tampak lebih biru bila benda tadi bergerak mendekat dan lebih merah bila menjauh.

Vesto Slipher di Observatorium Lowell, Amerika, pada tahun 1920 menunjukkan bahwa garis spektrum galaksi-galaksi yang jauh bergeser ke arah merah. Ini disebut pergeseran merah atau red shift. Artinya, galaksi-galaksi itu semuanya bergerak menjauhi kita. Dengan mengukur besar pergeseran merah itu kecepatan menjauh galaksi-galaksi itu dapat diukur.

Pada tahun 1929 Edwin Hubble di Observatorium Mount Wilson, Amerika, mendapatkan adanya hubungan antara kecepatan menjauh itu dan jarak galaksi. Makin jauh suatu galaksi, makin besar kecepatannya. Hubble mendapatkan hubungan itu linier dan menuliskannya dalam rumus V = H D dengan V = kecepatan menjauh, D = jarak galaksi dan H disebut tetapan Hubble. Dengan rumus Hubble itu dapat diperoleh bahwa semua galaksi itu dulu menyatu di suatu titik. Kapan ? Waktunya adalah t = D / V atau t = 1 / H. Pada waktu itulah terjadi big bang atau ledakan besar yang membentuk alam semesta ini.

Harga t inilah yang kita sebut sebagai umur alam semesta. Dengan mengukur tetapan Hubble H, maka umur alam semesta dapat ditentukan, yaitu sekitar 13-15 miliar tahun. Taksiran terbaik adalah 13,7 miliar tahun. Ini juga cocok dengan umur bintang-bintang tua di globular cluster (gugus bintang bola) yang ditentukan dari teori evolusi bintang, yaitu 12-13 miliar tahun.

Penemuan Hubble ini menunjukkan bahwa alam semesta kita ini sekarang mengembang. Pengembangan alam semesta dan Hukum Hubble dapat dijelaskan oleh model alam semesta Friedmann. Sebenarnya sifat alam semesta yang tidak statis ini sudah diperoleh Einstein ketika mengembangkan Teori Relativitas Umum-nya. Namun, Einstein dan banyak ahli fisika lainnya tidak memercayainya. Hanya Alexander Friedmann, seorang ahli fisika dan matematika Rusia, mengembangkan modelnya berdasarkan solusi non-static pada Teori Relativitas Umum Einstein. Ia memprediksi kemungkinan alam semesta yang mengembang pada tahun 1922, tujuh tahun sebelum Hubble menemukan hukumnya.

Dengan menggunakan hukum Hubble ini, galaksi yang dapat ditentukan pergeseran merah atau red shift-nya (dengan kata lain kecepatan menjauhnya), maka jaraknya dapat ditentukan. Galaksi Abell 1835 IR1916 pada awal tulisan ini, yang merupakan galaksi yang terjauh, ditentukan jaraknya dengan cara ini. Garis spektrum yang berasal dari hidrogren (disebut Lyman-alpha) di galaksi ini yang seharusnya berada di warna ultraviolet bergeser ke warna inframerah.

Jarak galaksi itu 13,23 miliar tahun cahaya. Bila alam semesta ini berumur 13,7 miliar tahun, berarti kita melihat galaksi itu hanya 470 juta tahun setelah big bang, sewaktu umur alam semesta baru 3,4 persen dari umurnya sekarang. Bila kita umpamakan alam semesta ini kakek berumur 80 tahun, yang kita lihat adalah balita berumur 2,5 tahun.

Bola terjauh


Seberapa jauh kita dapat melihat alam semesta" Pertama kita pahami dulu bagaimana posisi kita melihat masa lalu alam semesta. Imajinasikan kita berdiri di suatu titik dalam alam semesta. Kemudian kita bayangkan suatu bola dengan kita sebagai pusat. Katakan radius bola itu 1.000 tahun cahaya. Maka bila kita melihat benda yang berada di permukaan bola itu, berarti kita melihat benda itu pada keadaan 1.000 tahun yang lalu. Ini karena cahaya yang kita lihat (atau informasi yang kita terima) dari benda itu berangkat dari sana 1.000 tahun yang lalu.

Kita bisa membuat bola lain, kita tetap sebagai pusat, dan radius bola kita ambil jauh lebih besar, misalnya sejuta tahun cahaya. Kalau kita bisa melihat benda yang berada di permukaan bola itu, di mana pun arahnya, berarti kita melihat ke masa sejuta tahun yang lalu. Begitu seterusnya kita bisa membuat bola-bola histori alam semesta. Makin besar bola itu, makin jauh kita melihat ke masa silam.

Umur alam semesta ditaksir sekitar 13,7 miliar tahun. Maka benda terjauh yang bisa kita lihat adalah benda yang terletak di permukaan bola yang radiusnya dari kita 13,7 miliar tahun cahaya. Itulah bola terbesar yang bisa kita buat. Apa yang bisa kita lihat di situ ?

Kita tengok sebentar peristiwa sehari-hari. Pada siang hari yang berawan kita melihat langit berwarna putih. Kita tidak bisa melihat matahari yang berada di balik awan itu. Ini disebabkan karena partikel uap air di awan menyebarkan cahaya matahari. Ibaratnya, cahaya matahari "dipingpong" ke sana kemari oleh partikel uap air (disebut penyebaran Mie). Dengan begitu, kita kehilangan informasi tentang arah sumber cahaya itu, yaitu matahari. Tetapi bila ada pesawat terbang yang terbang di bawah awan, kita bisa melihatnya. Jadi, ruang di antara kita dan awan transparan, sedangkan awan tidak transparan.

Kembali ke alam semesta. Tak lama setelah big bang terjadi, alam semesta dihuni oleh partikel cahaya atau radiasi (photon), inti-inti atom ringan (yang terdiri dari proton dan neutron) dan elektron bebas. Elektron bebas bersifat menyebarkan cahaya (photon), sama seperti partikel uap air di dalam awan tadi. Jadi pada saat itu alam semesta tidak transparan, karena cahaya atau radiasi di situ "dipingpong" oleh elektron (disebut penyebaran Compton), mirip yang terjadi pada awan pada analogi di atas.

Akan tetapi, sekitar 400.000 tahun setelah big bang, proton dan elektron bergabung membentuk atom hidrogen netral. Jumlah elektron bebas berkurang. Karena partikel penyebarnya (elektron) berkurang, maka penyebaran cahaya atau radiasi juga berkurang. Jadi, alam semesta sekitar 400.000 tahun setelah big bang menjadi transparan.

Permukaan bola pada jarak 400.000 tahun setelah big bang disebut "permukaan penyebaran terakhir" atau surface of last scattering. Kalau kita melihat ke surface of last scattering (berarti ke masa 400.000 tahun setelah big bang), ibaratnya kita melihat ke awan pada analogi di atas. Yang di balik itu tidak dapat kita lihat karena alam semesta waktu itu tidak transparan. Alam semesta mulai dari surface of last scattering hingga kita transparan. Dari surface of last scattering itu kita melihat radiasi yang berasal dari big bang yang dikenal sebagai latar belakang gelombang mikrokosmik atau cosmic microwave background disingkat CMB.

Pengamatan CMB


Pada tahun 1948, ahli astrofisika kelahiran Rusia, George Gamow, mengemukakan bila kita melihat cukup jauh ke alam semesta, maka kita akan melihat radiasi latar belakang sisa dari big bang. Gamow menghitung bahwa setelah menempuh jarak yang sangat jauh, radiasi itu akan teramati dari Bumi sebagai radiasi gelombang mikro.

Pada tahun 1965, Arno Penzias dan Robert Wilson sedang mencoba antena telekomunikasi milik Bell Telephone Laboratory di Holmdel, New Jersey. Mereka dipusingkan oleh adanya desis latar belakang yang mengganggu. Mereka mengecek antena mereka, membersihkan dari tahi burung, tetapi desis itu tetap ada. Mereka belum menyadari desis yang mereka dengar itu berasal dari tepi jagat raya.

Penzias dan Wilson menelepon astronom radio Robert Dicke di Universitas Princeton untuk minta pendapat bagaimana mengatasi masalah itu. Dicke segera menyadari apa yang didapat kedua orang itu. Segera setelah itu dua makalah dipublikasikan di Astrophysical Journal. Satu oleh Penzias dan Wilson yang menguraikan penemuannya, satu oleh Dicke dan timnya yang memberikan interpretasi. Penzias dan Wilson memperoleh Hadiah Nobel untuk Fisika pada tahun 1978.

Penemuan CMB itu dikukuhkan oleh satelit Cosmic Background Explorer (Cobe) milik Badan Antariksa Amerika Serikat (NASA). Pengukuran oleh satelit Cobe itu menunjukkan temperatur CMB yang hanya 2,725 derajat Kelvin (nol derajat Celsius sama dengan 273 derajat Kelvin). Satelit Cobe memetakan radiasi itu di segala arah dan ternyata semuanya uniform sampai ketelitian satu dibanding 10.000. Kalau kita mempunyai mata yang peka pada CMB, maka langit seperti dilabur putih, sama di semua arah, mulus sempurna, tidak ada noda-nodanya. Ini sesuai dengan prinsip dasar kosmologi bahwa alam semesta ini isotropik dan homogen; seragam di semua arah. Yang kita lihat adalah surface of last scattering.

Sedemikian seragamnya CMB hingga hanya alat yang sangat sensitif dapat melihat adanya fluktuasi atau ketidakseragaman pada CMB. Untuk itu, NASA telah meluncurkan satelit antariksanya, Wilkinson Microwave Anisotropy Probe (WMAP), yang lebih cermat daripada Cobe untuk mempelajari fluktuasi itu. Dengan mempelajari fluktuasi itu, diharapkan kita dapat mengetahui asal mula galaksi-galaksi dan struktur skala besar alam semesta dan mengukur parameter-parameter penting dari big bang.

Bola langit

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
 
 
 
Bola langit
Dalam istilah astronomi dan navigasi, bola langit adalah bola khayal dengan radius tak hingga yang tampak berotasi, konsentrik dan koaksial dengan Bumi, dan semua obyek langit dibayangkan berada pada kulit bola sebelah dalam. Sebanding dengan yang dimiliki bola Bumi, ekuator langit dan kutub-kutub langit merupakan proyeksi ekuator Bumi dan kutub-kutub Bumi pada bola langit. Bola langit merupakan "alat bantu" sangat penting dalam astrometri.
Bola langit dapat digunakan secara geosentrik maupun toposentrik. Geosentrik berarti bola tersebut berpusat pada pengamat khayal yang berada di pusat bumi dan efek paralaks tidak diperhitungkan. Sementara toposentrik berarti bola tersebut berpusat pada pengamat di permukaan Bumi dan paralaks horizontal tidak dapat selalu diabaikan


Bagaimana para ilmuwan mampu mengukur jarak antar planet ? bahkan mereka juga mampu mengukur diameter sebuah planet. Padahal tidak ada satu alat ukurpun yang dapat mengukurnya secara langsung.

Untuk memperoleh jarak bumi ke planet diperlukan alat yang disebut spektometer. Alat itu untuk menghitung lama perjalanan cahaya.

Misalnya melalui spektometer diketahui lamanya cahaya dari bulan sampai ke bumi adalah 1,3 detik. Jika kecepatan cahaya 299.774km/dtk maka jarak bulan - bumi adalah 1,3 X 299.774 yaitu 389.706 km

Sedang untuk mengetahui diameter bulan, dipakai satuan nilai sudut. Yaitu nilai yang menggambarkan berapa besar sudut yang dipakai orang untuk memandang seluruh bulatan benda 

misalnya nilai sudut bulan adalah 1.98 derajat, maka diameternya adalah 389.706 : (57 X 1,98) yaitu 3.453km (sudah dubulatkan).

Fisika dan Matematika memang paduan yang sempurna .
 


Hukum kepler
 
Lebih dari setengah abad sebelum newton merumuskan tiga hukum tentang gerak dan hukum gravitasi universal, seorang astronom berkebangsaan jerman Johanes Kepler (1571 – 1630) telah menulis sejumlah teori tentang astronomi. Teori kepler ini sebagian terbentuk setelah beberapa tahun ia menguji data yang dikumpulkan oleh Tycho Brahe (1546 – 1601) tentang posisi planet dalam gerakannya melintasi langit. Pada tulisan kepler itu terdapat tiga teori penting yang di sebut sebagai hukum kepler tentang gerak planet. Adapun inti hukum-hukum kepler ini adalah sebagai berikut :

Hukum I kepler
setiap planet bergerak pada lintasan elips dengan matahari berada pada salah satu titik fokusnya.”

Elips adalah suatu kurva tertutup sedemikian sehingga jumlah jarak dari sembarang titik P pada kurva ke kedua titik tetap (disebut titik fokus F1 dan F2) selalu tetap. Jadi, F1 P + F2 P selalu sama untuk setiap titik P pada kurva

Hukum II kepler
”setiap planet bergerak sedemikian sehingga jika suatu garis khayal di tarik dari matahari ke planet tersebut akan menyapu daerah yang sama pada selang waktu yang sama.”

Planet bergerak lebih cepat pada orbit yang lebih dekat dengan matahari.

Hukum III kepler
”untuk setiap planet, kuadrat periode revolusinya berbanding lurus dengan pangkat tiga jarak rata-ratanya dari matahari.”

Andaikan dua planet mempunyai jarak rata-rata dari matahari R1 dan R2, sedangkan periodenya, yaitu waktu yang diperlukan untuk satu kali mengelilingi matahari, berturut-turut adalah T­1 dan T2. Menurut hukum kepler, berlaku
T­12/T­22 = R­13/R­23

Newton dapat menunjukkan bahwa hukum kepler dapat diturunkan secara matematis dari hukum gravitasi universal dan hukum geraknya.
Sekarang kita akan mencoba membuktikan hukum III kepler menggunakan hukum newton. Kita akan membuktikan hukum tersebut untuk keadaan khusus di mana planet bergerak melingkar. Sebagian besar orbit planet sesungguhnya hampir menyerupai lingkaran. Andaikan sebuah planet bermasa m1 bergerak dengan kelajuan v1 mengelilingi matahari yang massanya Mm. jika jarak antara planet dan matahari R1, maka
                                ΣF = masp

  
  
 Jika periode planet ini adalah T1, maka v1 = 2 π R1/T1. Dengan demikian,
(persamaan 1)

Untuk planet kedua berlaku hal yang sama, yaitu
 (persamaan 2)


Dari kedua persamaan di atas dapat di simpulkan bahwa
(persamaan 3)

Contoh soal :
 periode revolusi bumi mengelilingi matahari adalah satu tahun dan jarak bumi – matahari adalah 1,5 x 1011 m. jika periode revolusi planet mars mengelilingi matahari adalah 1,87 tahun, berapakah jarak mars dari matahari ?
penyelesaian :
periode revolusi matahari : Tb = 1 tahun
jarak bumi – matahari : Rb­ – m­ = 1,5 x 1011 m
periode revolusi planet mars : Tm = 1,87 tahun
dengan menggunakan persamaan 3, di peroleh :

Jadi, jarak mars dari matahari adalah 2,28 x 1011 m.

Dengan menggunakan roket, sebuah satelit dapat di luncurkan dengan kelajuan tertentu sehingga dapat mengorbit bumi. Jika kelajuannya terlalu tinggi, satelit tidak dapat ditahan oleh gravitasi bumi dan lepas dari pengaruh gravitasi bumi. Dalam keadaan demikian, satelit tidak akan kembali lagi. Sebaliknya, jika kelajuannya terlalu rendah, roket akan jatuh ke bumi. Satelit biasanya di tempatkan pada orbit melingkar (atau hampir melingkar), sehingga memerlukan kelajuan lepas landas minimum. Jika ada pertanyaan, apakah yang menahan satelit sehingga tidak jatuh ke bumi ? jawabnya adalah kelajuannya yang tinggi. Untuk satelit yang bergerak (hampir) melingkar, percepatannya adalah v2/R. percepatan tersebut di hasilkan oleh gaya gravitasi yang berperan sebagai gaya sentripetal. Jadi, gerak satelit memenuhi persamaan

Dengan m = massa satelit, M = massa bumi, v = kelajuan satelit, R = jarak satelit diukur dari pusat bumi.
Sebagi contoh, satelit geosinkron yaitu satelit yang tetap berada di atas titik yang sama di atas katulistiwa. Jadi kelajuan satelit geosinkron diatur sedemikan rupa sehingga satelit tersebut mengelilingi bumi dengan periode yang sama dengan periode rotasi bumi, yaitu 24 jam. Satelit tersebut harus memiliki kelajuan sekita 3,070 km/jam, dan mengorbit pada ketinggian 36000 km di atas permukaan bumi.

1 komentar:

  1. Artikel ini sangat membantu saya dalam mengerjakan tugas Fisika yang diberikan oleh guru Fisika saya yang bekerja di SMAN 1 T*********. post ini sangat berkualitas karena saya menemukannya di mana-mana, bukan hanya di website ini, bahkan artikel ini ada di website saya karena saya copas dari sini, artikel ini juga masuk dalam "100k American Funniest Videos". Post ini terdapad pada halaman terakhir search engine (Google, Bing, Yahoo, Ask, Sidiqlazis, Facebook, NASA). Saya pernah bekerja di Pemerintahan Rusia, di sana saya menemukan post yang sangan berkualitas seperti ini dalam bentuk buku, judul buku tsb adalah "Harry Potter - The Prisoner of Azkaban". Post ini juga dapat ditemukan di dasar lautan karena post ini mengandung unsur" kehidupan (C, H, O, N) yang membimbing kita untuk menjadi negara yang baik dan ramah terhadap lingkungan dan sesama jenis. Sekali lagi, terima kasih telah menulis post yang seperti ini karena sangat bermutu tinggi dan memiliki bilangan oktan 100! lebih tinggi dari Pertamax!! Saya sarankan untuk mengembangkan post ini di Lembaga Ilmu Pengetahuan Indonesia dan mengirim post ini untuk diuji di ITB dan IPB, atau bisa juga dikirim ke luar bumi, tepatnya di matahari agar benar" matang, sehingga pembaca menjadi sangat puas karena post ini menyediakan air minum yang difilter oleh Puret. Post ini telah memberi pencerahan yang paling cerah secerah hatimu. Saya sangat suka musik Jazz, Rock, Pop dan sebagainya, hal itulah yang menyebabkan saya sangat suka dengan ramen khas jepang, yang khasiatnya dapat menyebabkan kita menjadi bergairah dalam menjalani hidup ini, tak ada artinya lagi, syukuri apa yang ada, artikel ini adalah anugrah, tetap menulis post ini, melakukan yang terbaik. Saya percaya post ini akan menjadikan generasi penerus bangsa menjadi cinta ploduk ploduk Indonesia. Intinya adalah post ini telah memperoleh penghargaan dari Panasbanget Award 2069 dan diharapkan menjadi situs pelopor kemerdekaan Indonesia. END

    BalasHapus